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Bridging the Gap Between Algorithms 
Research and Applications is the Challenge 

•  The challenges for UQ software tools stem from a single tension: 
– The software users, are not the same as the simulation software 

developers, are not the same as the UQ algorithm developers 

• Users want software tools that allow them to get their jobs done 
– Pick software tools that are “good enough” 
– Prefer tools that are easier to use and control rather than the most 

efficient or accurate 

• Simulation software developers 
– Are typically exports on physics/simulation, not UQ 
– Make design choices based on available tools and knowledge 

• UQ algorithm developers 
– Needs software tools to develop algorithms that can impact applications 
– Need realistic applications to develop and test those ideas and algorithms 



These Challenges Are Not Unique to UQ 

• Virtually all areas of advanced analysis suffer from these challenges 

• Algorithms require information application codes don’t normally 
provide, in order to do the research needed to impact the problems 
the applications are trying to solve 

• Progress in these areas has been made by identifying the software 
“hooks” and tools that makes algorithm research in production 
applications feasible 

– Optimization -- Derivatives 
– Error Estimation -- Adjoints & element residuals 
– Stability Analysis -- Access to linear algebra 

•  To make progress with UQ & PCE, we must identify these software 
hooks and tools needed to impact hard applications 



Software Needs, Opportunities and 
Challenges (Discussed in this talk) 

• Computing and representing stochastic inputs (need) 
– PC, KL & Fourier expansions of random fields 
– Representing random fields, boundary conditions, and geometries in 

software 

•  Intrusive PC propagation in individual applications (opportunity) 
– Dealing with nonlinearities 
– Adaptive and local methods 

• PC propagation in coupled systems (challenge) 
– Simulation tools for coupled systems 
– Stochastically coupling system components 



Computing Stochastic Representations 



Computing Stochastic Representations 

• First challenge in stochastic modeling is computing appropriate 
stochastic input representations 

– Spectral density (a.k.a. PSD) 
• Commonly supplied by engineering codes (e.g., turbulent fluid flow) 

– Karhunen-Loeve 
– Polynomial Chaos 

• Few general tools exist to compute these representations for input 
data 

– Critical for real science applications 
– Overall UQ modeling is only as good as the input representation 



Three Software Needs 
•  Tools for computing stochastic representations from data, e.g., 

– Maximum likelihood, Bayesian update, least-squares, maximum 
entropy, Kalman filter 

– What are the software tools needed to implement these algorithms for 
general use? 

•  Tools that compute representations from other representations 
– PSD to PCE 

•  A code may generate a PSD as input to another code 
•  FFTs may be used to generate realizations, how about PCEs? 

– PCE to KL 
•  Model reduction based on coarse grid solution (Doostan et al, 2007) 
•  Dimension reduction between coupled system components 
•  Need tools for large (sparse?) eigenvalue problems.  Anything else? 

– PECOS 
•  New library by Mike Eldred, initially focused on random field realizations 

from PSD’s. 



Three Software Needs … Continued 

• Libraries to incorporate these representations in application codes 
– Necessary for both intrusive AND non-intrusive 
– Can be done externally through scripts for non-intrusive, but this is not 

well integrated (remember users want code that is easy to use!) 

• Are existing geometry/discretization libraries sufficient? 
– Exodus, NetCDF, HDF5, ??? 
– Random material properties, geometries, boundary conditions, ??? 

• Experience has shown changing the library specifications is very 
difficult 

– Is it possible to build UQ wrappers around these basic libraries 

• We must have such tools for UQ & PCE to be widely used 



Intrusive PC Propagation in Individual 
Applications 



Intrusive Galerkin PC Approximation 

• Assuming we have a suitable stochastic representation of model 
inputs (PCE or K-L, for example) 

• Discretized the deterministic part of the problem (e.g., finite-
element) 

• Software needs/challenges 
– Computing PC residuals (i.e., intrusive propagation) 
– Data structures for forming nonlinear PC system and its linearization 

via Newton’s method 
– Solvers for solving the resulting linear and nonlinear systems 



Computing PC Residuals is a Significant 
Challenge in Nonlinear Applications 

• Transforming simulation code to compute PC residuals is a 
significant hurdle for adopting/researching method in complex 
applications 

• Need methods that can transform existing codes into stochastic 
codes easily 

• Need libraries that make it easy to build new stochastic codes 

• Several approaches 
– Compute projections in an operation by operation fashion 

• Manual code transformation (most commonly used method) 
• Automation of this through an automatic differentiation-like facility 
• Automation through symbolic finite elements (Sundance -- Kevin Long) 

– Element residual/Jacobian quadrature 



2.000 1.000 

7.389 7.389 

0.301 0.500 

0.602 1.301 

7.991 8.690 

0.991 -1.188 

What is Automatic Differentiation (AD)? 

•  Technique to compute analytic derivatives 
without hand-coding the derivative 
computation 

•  How does it work -- freshman calculus 
– Computations are composition of 

simple operations (+, *, sin(), etc…) 
with known derivatives 

– Derivatives computed line-by-line, 
combined via chain rule 

•  Derivatives accurate as original 
computation  

– No finite-difference truncation errors 

•  Provides analytic derivatives without the 
time and effort of hand-coding them 



Sacado:  AD Tools for C++ Applications 

• AD via operator overloading and C++ templating 
– Expression templates for OO efficiency 
– Application code templating for easy incorporation 

• Designed for use in large-scale C++ codes 
– Apply AD at “element-level” 
– Manually integrate derivatives into parallel data structures and solvers 
– Sacado::FEApp example demonstrates approach 

• Very successful in enabling analytic sensitivity calculations in large-
scale codes 
– Charon, Aria, Xyce, Alegra, LAMMPS 
– Jacobians, parameter sensitivities, 2nd derivatives 



Computing PC Residuals Operation by 
Operation via AD 

• AD relies on known derivative formulas for all intrinsic operations plus 
chain rule 

• AD infrastructure provides deep interface into application code 
– Access to entire computational graph 

• Similar approach can be used for any computation that can be done in an 
operation by operation manner 

– Assume inductively that PC expansions for two intermediate variables a and b 
have been computed, and we wish to compute a third c 



Projections of Arithmetic Intermediate 
Operations 

• Addition/subtraction 

• Multiplication 

• Division 



Projections of Transcendental  
Operations More Challenging 

• Debusschere et al (2004) proposed two approaches 
– Taylor series approximation 

• Use arithmetic rules repeatedly until error tolerance achieved 
– Time integration 

• Transcendental operations satisfy simple differential equations 
• By picking integration path, starting and ending points can compute 

coefficients using standard time integrator 
– Both approaches encapsulated into the UQLib library by Najm, 

Debusschere, Ghanem, and Knio 

• Third approach also based on differential equations 
– Differentiate w.r.t. polynomial argument leads to linear systems for 

coefficients of degree > 0, up to scaling 
– Degree 0 & scaling computed by summing series at origin 
– Not readily extensible to multivariate problems 



Another Approach is Quadrature for 
Element-Based Codes 

• Evaluate via quadrature for globally assembled residual 

– Requires parallel quadrature routines but only interface to global residual 

• Apply quadrature for each element residual then assemble 

– Requires only serial quadrature routines but needs element-level interface 
– Boundary conditions add complexity 

• Jacobian decomposes similarly 

•  In either case, application interface is significantly simpler than op-by-op 



Intrusive PCE Requires Much More Than  
PC Propagation 

• Data structures for forming block PC nonlinear system 

• Linear solver/preconditioner methods for solving block PC linear 
systems (after linearization) 

• Trilinos provides nice opportunity for developing these capabilities 



The Trilinos Project 

•  http://trilinos.sandia.gov  
•  Algorithms and enabling technologies 
•  Large-scale scientific and engineering 

applications 
•  Object oriented framework 
•  “String of Pearls” 
•  Focus on packages 

–  Over 30 packages in 8.0 release 
–  Over 40 in development 
–  Growing exponentially 



Trilinos Packages 
Objective Package(s) 

Discretizations 
Meshing & Spatial Discretizations phdMesh, Intrepid 

Time Integration Rythmos 

Methods 
Automatic Differentiation Sacado 

Mortar Methods Moertel 

Core 

Linear algebra objects Epetra, Jpetra, Tpetra 

Abstract interfaces Thyra, Stratimikos, RTOp 

Load Balancing Zoltan, Isorropia 

“Skins” PyTrilinos, WebTrilinos, Star-P, ForTrilinos 

C++ utilities, (some) I/O Teuchos, EpetraExt, Kokkos, Triutils 

Solvers 

Iterative (Krylov) linear solvers AztecOO, Belos, Komplex 

Direct sparse linear solvers Amesos 

Direct dense linear solvers Epetra, Teuchos, Pliris 

Iterative eigenvalue solvers Anasazi 

ILU-type preconditioners AztecOO, IFPACK 

Multilevel preconditioners ML, CLAPS 

Block preconditioners Meros 

Nonlinear system solvers NOX, LOCA 

Optimization (SAND) MOOCHO, Aristos 



Trilinos Tools Useful for Intrusive PCE 
• Epetra -- MPI-based vector/matrix data structures & operator interfaces 

– Used by application codes to form FE residuals, Jacobians 
• Thyra -- Abstract vector, operator, and nonlinear interfaces 

– Allows abstraction of solver algorithms away from application data structures 
– Product vectors for representing block PCE solution/residual vectors 

– Operators implementing PCE matrix-vector-product in “matrix-free” fashion 
– Nonlinear interface transforming deterministic Thyra interface into PCE 

•  Ifpack, ML, Amesos -- Preconditioners and direct solvers 
– Approximate inverse of mean (degree 0) PCE block 

• AztecOO, Belos -- Iterative linear solvers 
– Advanced solvers for block PCE linear systems 

• NOX & Rythmos  -- Abstract nonlinear solver & time integration algorithms 
– Use nonlinear Thyra PCE interface to solve steady & transient PCE problems 



Trilinos Package Stokhos 
• These ideas form the basis for a new Trilinos package called Stokhos 

– Collaborative effort among the PCE community to develop tools for large-scale codes 

•  Initial thoughts are Stokhos will provide 
– PCE vector/operator interfaces 
– Nonlinear PCE application interface 
– Solver/preconditioner algorithms 
–  Intrusive propagation methods 

• Currently it only has 
– General facilities for intrusive propagation 
– Wrappers around UQLib library of Najm, Debusschere, Ghanem & Knio  
–  Implementation of the linear-solve AD approach 
– Sacado wraps these for AD PCE 

• Sacado::FEApp 
– Example 1D finite element code demonstrating AD 
–  Initial implementation of PCE solvers/interfaces using Epetra 



Sacado::FEApp Demonstration of  
Intrusive PCE using Stokhos & Sacado 

•  1-D Bratu problem: 

•  Exponential parameter dependence just 
for fun! 

•  Linear finite element discretization, 100 
elements 

•  Uniform random variables for nonlinear 
factor over [-1, 1], PCE using Legendre 
polynomials (to avoid bifurcation!) 

•  Sacado wrapping Stokhos wrapping 
UQLib library, using Taylor series 
approach for exponential 

•  Matrix free-PCE Jacobian using mean 
as preconditioner, Ifpack RILU(0) 
preconditioner 

•  Solution mean used as quantity of 
interest 



PCE for 1-D Bratu Problem 

•  NIPC using sparse-grid 
quadrature (Dakota) 

•  Intrusive run time is dominated 
by residual and Jacobian fill 

•  Solve scaling roughly linearly 
•  Suggests quadrature approach 

may be more efficient 



Beyond Global PCE 

• To impact real applications we must deal with lack of smoothness 
in parameter spaces 

– Bifurcations 
– Discontinuities 

• Local/adaptive methods 
– Wavelet-type approximations (Le Maître et al) 
– Finite element-type approximations (Babuska et al) 

• What are the tools needed to implement these in complex codes 
– In principle, the software ideas for global PCE still apply 
– Are product-vector structures the best way to store coefficients? 
– We must exploit parallelism over local parameter domains 



PC Propagation in Coupled Systems 



Coupled Systems Present New Opportunities 

• Coupled systems 
– System of interacting components 
– Each component often simulated by separate code or module 
– Overall system driven by some solution process  

• Coupled systems are where the funding is going 
– One kind of “complex system”? 

• Coupled systems provide tremendous opportunities for PC 
modeling to impact science applications 

– Waste repository modeling 
– Nuclear reactor design & licensing 
– Fusion reactor design 
– Electrical systems 



Yucca Mountain 





Challenges for PCE Modeling of  
Coupled Systems 

• Effective simulation tools don’t exist! 
– Collection of distinct simulation codes coupled through scripts and 

user interaction 
– Loose nonlinear coupling that may not represent physics 
– Slow and/or inaccurate solution processes 

• Picard iteration 
• Operator splitting/lagging 

– Best case scenario is a an automated system that can be driven by 
Monte Carlo 

• Opportunities are ripe for PCE modeling 
– Exploit coupled system structure 
– Apply PCE to each component 
– Model reduction between components 
– Invert traditional layering of UQ on top of solution processes 



Software Path Forward for PCE of  
Coupled Systems 

• Foundational tools 
– Computing stochastic representations 
– PC propagation 

• Software needs 
– Interfaces for coupling components through PCE 
– Nonlinear solver software for solving stochastically coupled system 
– Simulation tools to put these systems together 

• From this we can begin to address these types of problems 
– Enable the real algorithm research that must occur 



Major Challenges in Important Areas of  
PC Modeling 

• Computing stochastic representations 
– Need tools for computing representations from data 
– Need tools for generating PCEs from KL’s and PSD’s, and vice versa 

• PC propagation through nonlinear applications 
– AD approach is effective, but may not be the most efficient 
– Quadrature approach is simpler and may be faster 
– Trilinos provides tools to develop solvers optimized for PCE 

• PC modeling of coupled systems exploiting structure 
– Good simulation tools don’t exist 
– Opportunity to exploit structure by inverting UQ over solution layering 



Much More To This Story 

• Validation 
– Comparing to experimental data 
– Inverse problems 

• Decision support 
– Weighing risk against performance 

• Higher-order analysis 
– Optimization and uncertainty 
– Model reduction and uncertainty 
– Stability analysis and uncertainty 
– Error estimation and uncertainty 


